

Spatial Data Science

Sankofa Curriculum - Summer 2025

Lesson 02: Foundations of GIS

Rob Hendrickson Instructor robwhendrickson@proton.me

Author: Rob Hendrickson Data provided by GeoDI Lab Basemap by MapBox © kepler.gl | © Mapbox | © OpenStreetMap

LINO LAKES

INVER GRO

CRVST

BURNSVILLI

LAKEVILLE

CENTER CITY

STILLWATER

Review: Spatial is Special

Definition: Food System

The term **food system** describes the <u>interconnected systems</u> and processes that influence nutrition, food, health, community development, and agriculture.

A **food system** includes all processes and infrastructure involved in feeding a population:

Growing, harvesting, processing,

Packaging, transporting, marketing,

Consumption, distribution, and disposal

of food and food-related items.

From Wikipedia (June 2025)

Remember Place

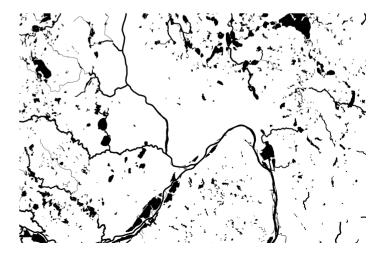
<u>Space</u>

Space is a three-dimensional continuum containing positions and directions.

(Britannica Dictionary, 4/2008)

Meaning

A quality that gives something real value and importance


(Britannica Dictionary, 6/2025)

Place

Place ... is a part of the terrestrial surface that is not equivalent to any other,

that cannot be exchanged with any other without everything changing

(Franco Farinelli - Source)

Icebreaker Activity

• Draw or describe something you learned about Minneapolis from the last lab

 Take 2 minutes to complete #1 on the activity sheet

 Reintroduce yourself to a neighbor and share your meal

Agenda

- I. What is GIS?
- II. How to Make a Map
 - ~~~ BREAK ~~~
- III. GIS Fundamentals
- IV. Lab

What is GIS?

Definition: **GIS**

A Geographic Information System (**GIS)** is a computer-based system to aid in the

<u>collection</u>, <u>maintenance</u>, <u>storage</u>, <u>analysis</u>, <u>output</u>, and <u>distribution</u>

of spatial data and information

From Bolstad (6th Edition)

A GIS consists of:

- Digital Data
 - The geographical information that you will view and analyze using computer hardware and software.

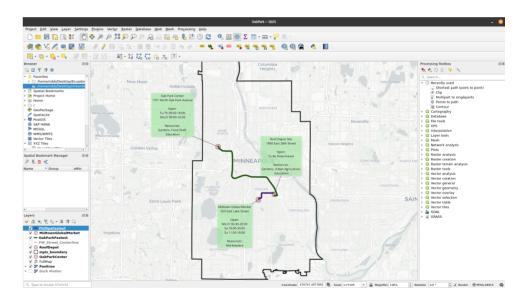
Computer Hardware

Computers used for storing data, displaying graphics and processing data.

Computer Software

 Computer programs that run on the computer hardware and allow you to work with digital data. A software program that forms part of the GIS is called a GIS Application.

From https://docs.qgis.org/3.40/en/docs/gentle_gis_introduction/introducing_gis.html


https://www.swyvl.io/blog/what-is-gis-geographical-inform ation-systems-mapping-explained-with-examples

Activity – Why SankofaPOWER?

• How might the spatial information we collect with SankofaPOWER be useful?

Take 2 minutes to complete
 #2 on the activity sheet

- Share with your neighbor

How to Make a Map

The QGIS project for this demonstration can be downloaded at: https://rwhendrickson.github.io/Portfolio/pages/resources#free--open-source-software

Types of Maps

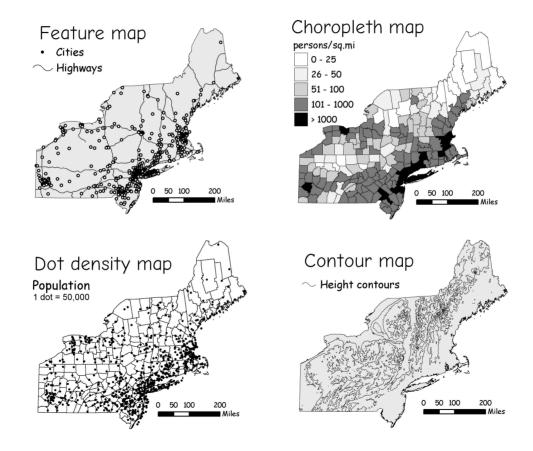


Figure 4.5 from Bolstad (6th Edition)

Activity – Download QGIS!

Let's head over to QGIS and download our first GIS application!

https://qgis.org/download/

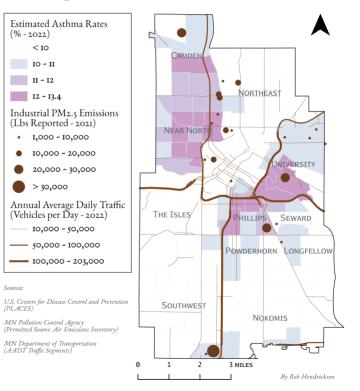
BREAK! (Please be back in 10 minutes)

GIS Fundamentals

What is a Dataset?

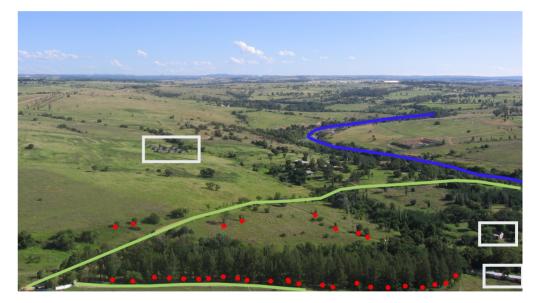
- A **dataset** is a collection of data (measurable info) consisting of the following:
 - **Observations** Elements of the study | rows in a table
 - Variables Properties of observations | columns in a table
 - Data Values Measurements of the variables for each observation

	STATION	NAME	LATITUDE	LONGITUDE	ELEVATION	DATE	TAVG	тмах	TMIN
0	USW00003951	LONGVIEW 11 SE, TX US	32.3466	-94.6533	124.1	2021-02-01	NaN	65.0	29.0
1	USW00003951	LONGVIEW 11 SE, TX US	32.3466	-94.6533	124.1	2021-02-02	NaN	65.0	29.0
2	USW00003951	LONGVIEW 11 SE, TX US	32.3466	-94.6533	124.1	2021-02-03	NaN	56.0	34.0
3	USW00003951	LONGVIEW 11 SE, TX US	32.3466	-94.6533	124.1	2021-02-04	NaN	65.0	44.0
4	USW00003951	LONGVIEW 11 SE, TX US	32.3466	-94.6533	124.1	2021-02-05	NaN	73.0	38.0


Spatial Representations

How do we represent the real world

in a way our


computers can understand?

Asthma, Industrial PM2.5 Emissions, and Traffic (Minneapolis)

Representations (Vector)

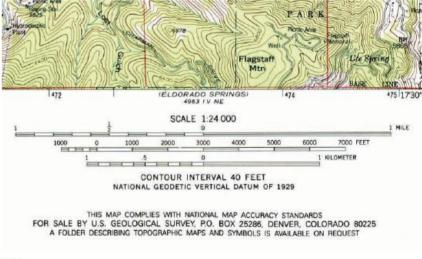
- Points, Lines, and Polygons
- Represents a discrete number of objects (features) grouped into a layer
- Think of choropleths, rivers, roads, trees, buildings, etc.

Source: https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/vector_data.html

Representations (Raster)

- A matrix (grid/field) of cells (pixels) with an affine transformation
- Represents a surface of continuously changing values
- Think satellite images, weather radar, basemaps, kernel density estimation, land classification, etc.

Source:https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/raster_data.html

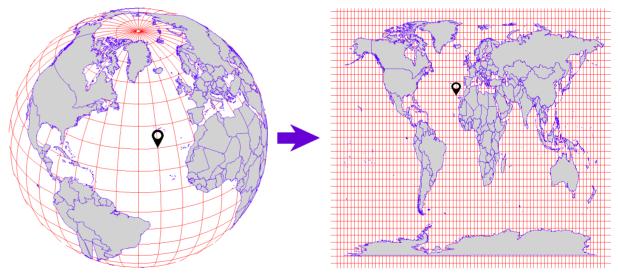

Data Formats

- Vector
 - GeoJSON (.json)
 - Shapefile (many files)
 - Geo Markup (.gml)
 - Well Known Text (WKT)
 - .kml, WKB, GDF, ...

- Raster
 - GeoTIFF (.tif)
 - ASCII Grid (.asc)
 - ERDAS Imagine (.IMG)
 - DEM (.ddf, .dem, .dat)
 - .png, .pdf, .jpg, .rst, ...

Scale vs. Scope

- The <u>scale</u> of a map is the ratio of distance on the map to the real distance
- Opposite of intuition!
 - Large scale = <u>More detail</u> with less area
 - Small scale = <u>Less detail</u> with more area
- <u>Scope</u> = Extent in space

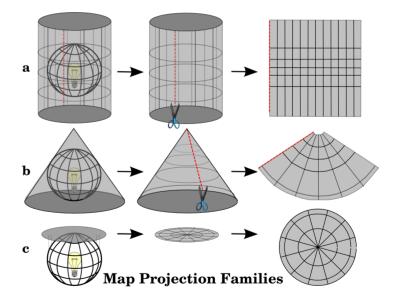

Source:

https://geo.libretexts.org/Bookshelves/Geography_(Physical)/Essentials_of_Geographic_Info rmation_Systems_(Campbell_and_Shin)/02%3A_Map_Anatomy/2.02%3A_Map_Scale_Coo rdinate_Systems_and_Map_Projections

Read more here: https://www.geographyrealm.com/understanding-scale/ | https://geo.libretexts.org/Bookshelves/Geography_(Physical)/Essentials_of_Geographic_Information_Systems_(Campbell_and_Shin)/02%3A_Map_Anatomy/2.02 %3A_Map_Scale_Coordinate_Systems_and_Map_Projections

Coordinate Reference Systems (1)

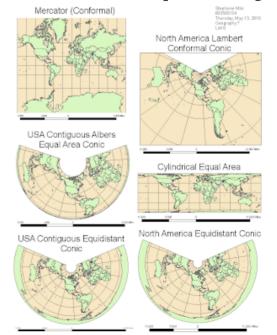
- How do we put the round Earth on a flat piece of paper or computer screen?
 - We must agree on the
 Shape of the globe
 - Geodesy
 - Geographic
 Coordinate System
 (eg. WGS84)


Source: https://raw.githubusercontent.com/ThamesEstuaryPartnership/booklet/main/Figures/pcs.png

2) Then we can project!

Read more here: https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/coordinate_reference_systems.html | https://bookdown.org/tep/gis/introduction-to-coordinate-reference-system.html

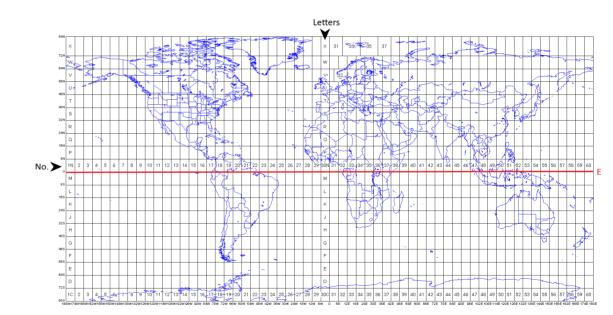
Coordinate Reference Systems (2)


- A <u>Map Projection</u> attempts to transform the Earth from 3D to 2D using mathematical principles of geometry and trigonometry
- There are 3 families of projection:
 - a) Cylindrical
 - b) Conical
 - c) Planar
- No projection is perfect!
 - Compromise is key

Source: https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/coordinate_reference_systems.html

Coordinate Reference Systems (3)

- We must compromise distortions of **angular conformity**, **distance**, and **area** as well as the **scope of the map/analysis**
- **Conformal** or **Orthomorphic:** Preserve angles, used for navigation
- Equidistant: Preserves distance, used for seismology & navigation
- Equal Area: Preserves area, used for development



Source: https://smgeog7.blogspot.com/2010/05/lab-6-map-projections.html

Read more here: https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/coordinate_reference_systems.html | https://bookdown.org/tep/gis/introduction-to-coordinate-reference-system.html

Coordinate Reference Systems (4)

- A <u>Coordinate Reference System (CRS)</u> refers to a specific method of Geographic or Projected Coordinate System
- 3 Common CRS
 - WGS84 | EPSG:4326 | (lat/lons)
 - Web Mercator | EPSG:3857 | Google
 - UTM | EPSG:Various | Zones
- Many more localized options

UTM Zones Source: https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/coordinate_reference_systems.html

Read more here: https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/coordinate_reference_systems.html | https://bookdown.org/tep/gis/introduction-to-coordinate-reference-system.html

Lab Time!

Please go to

https://github.com/RwHendrickson/SankofaClass/blob/main /Session02/LabInstructions.pdf

Github.com/RwHendrickson/SankofaClass

Thank you!